AI学高数达到MIT本科水平,学了微积分线代等6门课,做对210道题

梦晨发自凹非寺量子位报道|左边公众号右边QbitAI让语言模型做数学题,有多难?强如GPT-3,在9-12岁的小学数学上,第一次才考20多分。去年底GPT-3用上新方法努力了很久终于拿到55分,可惜还是没及格。万万想不到啊,2022年才刚开始,突然有人宣布他们

AI学高数达到MIT本科水平,学了微积分线代等6门课,做对210道题

落户上海咨询二维码  

  

梦晨发自凹非寺量子位报道|左边公众号右边QbitAI

  

让语言模型做数学题,有多难?

  

强如GPT-3,在9-12岁的小学数学上,第一次才考20多分。

  

去年底GPT-3用上新方法努力了很久终于拿到55分,可惜还是没及格。

  

万万想不到啊,2022年才刚开始,突然有人宣布他们的模型掌握了高数,达到MIT本科水平。

  

AI学了6门MIT本科基础数学课里随机抽取的例题,都是网上就有的公开课,包括:

  

单变量微积分(课程编号18.01)多变量微积分(18.02)微分方程(18.03)概率与统计入门(18.05)线性代数(18.06)计算机科学中的数学(6.042)

  

那么AI最后学到什么水平呢?

  

6门课程每门随机出25道题,再加上一个ACT水平(美国高考)的数据集里的60道题。

  

总计210道题,AI全部答对。

  

  

题目包括需要求出具体数值的,比如菌落繁殖的经典问题。

  

  

也有要求给出方程式的。

  

  

要求画出函数图像的也没问题。

  

  

最后为了证明训练出来的AI没有过拟合,还额外加试了一场应用线性代数(COMS3251)。

  

这门课不是公开课,网络上根本没有,也就是说AI在预训练阶段不可能接触到,结果AI也掌握了。

  

要知道在短短几个月前,AI还在挣扎于“小明种了5颗柠檬树,每年从每棵树上得到6个柠檬,10年间他总共得到多少柠檬”这样的问题。

  

  

短短几个月,从小学数学跨越到了高等数学。

  

这项来自MIT+哈佛+哥伦比亚大学+滑铁卢大学的联合研究开了什么挂?

  

  

对于AI也是审题最重要

  

研究团队发现以前用AI做数学题的尝试有一个共同点:训练数据里只有文本。

  

这简直是AI中的文科生,学不好数学也算正常。

  

那么AI中的理科生要怎么培养?

  

研究团队的解决思路是先在文本上做预训练,再用代码进行微调。

  

核心思想是把数学问题转换成等价的编程问题。

  

他们找来的这位AI理科生与GPT-3师出同门——

  

OpenAI的Codex,也是GitHub代码生成工具Copilot背后的技术基础。

  

  

Codex解题的过程分两步:先审题,再作答。

  

第一步,自动生成需要的上下文,把题干扩充、缩减或改写成适合编程解决的样子。

  

第二步,生成对应的代码,运行后给出答案。

  

比如补充自然语言题干中隐藏着的问题语境“在微分方程中”。

  

  

列好解题需要用到的Python库。

  

  

把问题扩充成更精确的数学语言。

  

原问题:

  

计算扑克牌中一副手牌中有两对的概率。

  

改写问题:

  

一副手牌有5张牌,从13组每组4张一共52张牌中随机抽取。“两对牌型”要求手牌中共有3种牌,每种数量不能多于两张,也就是说相同的牌不能超过三张。请编写一个模拟程序求出抽到“两对牌型”的概率。

  

(这也太严谨了)

  

  

对于一个复杂问题,先自动生成中间步骤的提示,再写代码。

  

  

如果题目中有与数学无关的多余信息,也需要去掉。

  

  

就这样,AI靠先审题再写代码的方式做出全部正确答案。

  

除了做题,学会高数的AI还能反过来给人类出题。

  

不到一秒钟就能出一道题,试验中总共出了120道题。

  

把人类出的题和AI出的题混在一起,找学生来做问卷调查,学生也很难分清一道题是不是AI出的。

  

  

他们觉得AI出的题要稍微难一些,但大多数题目放在课程里也算合适。

  

  

AI出的题你会做吗?

  

论文中列出了这项研究还存在几个局限性。

  

首先是做不了题干带配图的题,这次试验中也没有需要大量证明的题。

  

另外最终答案是实际运行代码得出的,但最近有研究表明神经网络也可以直接预测出部分代码的执行结果。

  

以及还是有一些开放性高的题目AI做不出来。

  

比如“一个向量v能否表示为一个集合S中的向量之和?”或者“以下方程的整数值解是什么?”

  

最后还有一个彩蛋,论文作者中出现了GilbertStrangcan。

  

他编写的《线性代数导论》被誉为最好的线性代数教科书之一。

  

  

他在这篇论文中的贡献是提供了研究思路。

  

研究团队下一步打算把这项技术扩展到更多课程,并考虑实际应用到教学中。

  

也许以后MIT的同学期末考试里会有AI出的题了。

  

要不先来试一试,AI出的题你能做出来吗?

  

  

论文地址:

  

参考链接:[1

  

举报/反馈

免责声明:本站部分内容和图片来源于互联网,经本站整理和编辑,版权归原作者所有,本站转载出于传递更多信息、交流和学习之目的,不做商用不拥有所有权,不承担相关法律责任。若有来源标注存在错误或侵犯到您的权益,烦请告知网站管理员,将于第一时间整改处理。管理员邮箱:y569#qq.com(#转@)

相关推荐

推荐内容

落户咨询2
最新资讯
落户咨询3